Reordering Search Results to Support Learning

fevereiro 17, 2020 § Deixe um comentário

sorting

Teixeira C.P., Tibau M., Siqueira S.W.M., Nunes B.P. (2020) Reordering Search Results to Support Learning. In: Popescu E., Hao T., Hsu TC., Xie H., Temperini M., Chen W. (eds) Emerging Technologies for Education. SETE 2019. Lecture Notes in Computer Science, vol 11984. Springer, Cham.

Abstract: Although many learning activities involve search engines, their ranking criteria are focused on providing factual rather than procedural information. In the context of Searching as Learning, providing factual information may not be the best approach. In this paper, we discuss the relevance criteria according to traditional learning theories to support search engine results reordering based on content suitability to learning purposes. We proceeded on the investigation by selecting some self-proclaimed search literacy experts to answer thoroughly questions about their views on the reordered results. We take into account that literacy expert’s judgment may reveal issues regarded to technical side on learning supported by search tools. Experienced users claimed a preference for reliable sources and direct answers to what they are looking for, as they have exploratory skills to overcome information incompleteness.

DOI: https://doi.org/10.1007/978-3-030-38778-5_39

A comparison between Entity-Centric Knowledge Base and Knowledge Graph to Represent Semantic Relationships for Searching as Learning Situations

novembro 25, 2019 § Deixe um comentário

knowledge-graph-database-1

TIBAU, Marcelo; SIQUEIRA, Sean; NUNES, Bernardo Pereira. A comparison between Entity-Centric Knowledge Base and Knowledge Graph to Represent Semantic Relationships for Searching as Learning Situations. Anais dos Workshops do Congresso Brasileiro de Informática na Educação, [S.l.], p. 823, nov. 2019. ISSN 2316-8889. Disponível em: <https://br-ie.org/pub/index.php/wcbie/article/view/9032>.doi: http://dx.doi.org/10.5753/cbie.wcbie.2019.823.

Abstract: Searching the web with learning intent, known as Searching as Learning (SaL), consists on learners to use Web search engines as a technology to drive their learning process. However, it may be difficult to users to find out relevant information online due to an inability to accurately specify their information need, a situation known as Anomalous State of Knowledge (ASK). To minimize the ASK situation, the continuous flow of data gathering and interaction between user and the search results could be used by search engines to tailor learning-intent search experience. It requires Web search engines to identify such intent and they may use linked data, Knowledge Bases and Graph Databases in order to recognize the meaning of query terms and keywords and use them to predict learning intent. In order to explore the possibility of semantic data structures to represent knowledge that could aid a learning-driven Web search engine to recognize learning intention from user’s queries, the present paper compared the performance of two different types of data structures based on entity-centric indexing to identify properties and semantic relationships. One was a knowledge base that used a entity-centric mapping of Wikipedia categories and the other was the KBpedia Knowledge Graph. The entity ranking and linking of both were analyzed and we discovered that the knowledge graph could identify about three times more properties and relationships.

Google, se reordene e me ajude a aprender: Critérios de relevância para reordenar resultados de busca como um processo de aprendizagem

novembro 20, 2019 § Deixe um comentário

maxresdefault

PINELLI, Cleber; TIBAU, Marcelo; SIQUEIRA, Sean. Google, se reordene e me ajude a aprender: Critérios de relevância para reordenar resultados de busca como um processo de aprendizagem. Brazilian Symposium on Computers in Education (Simpósio Brasileiro de Informática na Educação – SBIE), [S.l.], p. 576, nov. 2019. ISSN 2316-6533. Disponível em: <https://br-ie.org/pub/index.php/sbie/article/view/8762>. doi: http://dx.doi.org/10.5753/cbie.sbie.2019.576.

Abstract: As ferramentas de busca podem auxiliar as pessoas na condução de tarefas de aprendizagem informal, contudo os critérios usados para o ranqueamento de seus resultados estão voltados a prover respostas factuais e pouco processuais. Neste contexto, este artigo apresenta critérios de relevância, baseados em teorias de aprendizagem, para apoiar uma reordenação dos resultados da busca quando há intenção de aprendizado. Para avaliar a aplicabilidade da proposta, foi utilizado um questionário contendo um comparativo entre exemplos de páginas de resultado de busca da Google e sua versão modificada. A pesquisa evidenciou que o resultado reordenado foi melhor aceito, sobretudo por aqueles que possuem maior habilidade de busca. Isto pode ser um indicativo de que reorganizar o resultado de buscas com base em teorias de aprendizagem pode apoiar a aprendizagem informal.

 

1º Workshop Brasileiro de Busca como um Processo de Aprendizagem (WBPA 2019)

novembro 6, 2019 § Deixe um comentário

search-learn

A programação do WBPA @ CBIE 2019 foi disponibilizada na página do evento. Juntamente com a programação, foram antecipados os artigos a fim de enriquecer a interação entre os participantes durante as sessões. Os anais oficiais estarão disponíveis em breve.
1º Workshop Brasileiro de Busca como um Processo de Aprendizagem (WBPA 2019)

http://sal.uniriotec.br/wbpa-2019/#programaWBPA2019

Using Query Reformulation to Compare Learning Behaviors in Web Search Engines

setembro 6, 2019 § Deixe um comentário

search

M. Tibau, S. W. M. Siqueira, B. Pereira Nunes, T. Nurmikko-Fuller and R. F. Manrique, “Using Query Reformulation to Compare Learning Behaviors in Web Search Engines,” 2019 IEEE 19th International Conference on Advanced Learning Technologies (ICALT), Maceió, Brazil, 2019, pp. 219-223.
doi: 10.1109/ICALT.2019.00054
keywords: {query reformulation;query states;searching as learning;Web search engine;exploratory search;knowledge-intensive process},
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8820932&isnumber=8820810

Abstract: Web search engines have gained importance as tools capable of connecting informal and self-learning with formal learning by aiding individuals in retrieving relevant information through the formulation and modification of their queries. Understand the differences between query states and their transitions becomes increasingly important, as doing so makes the optimization of search engines’ results according to educational uses and needs possible. This paper introduces the ESKiP Taxonomy of Query States, a classification framework validated in an experiment involving two different query log datasets. It enables the comparison between the behaviors of users in search for knowledge (learners) and users performing transactional or factual searches in Web search engines.

 

Exploratory Search as a Knowledge-intensive Process

maio 3, 2019 § Deixe um comentário

conceito-de-marketing-de-motores-de-busca_1325-486

Abstract: This paper presents an exploratory search model capable of assisting the visualization of search patterns and clarifying best practices associated to users’ decision-making process, with implications in areas related to information retrieval, humancomputer interaction, Web searching and educational technology. The Exploratory Search Knowledge-Intensive Process model considers tasks and search activities as part of a chain of actions that help clarify the reasons why a subject is searched. It also supports the visualization on how the information retrieved is used to define decision criteria about which data is worth extracting, to draw inferences, and to create a shortcut to understanding.

Marcelo Tibau, Sean W. M. Siqueira, Fernanda Baião and Bernardo Pereira Nunes. 2018. Exploratory Search as a Knowledge-intensive Process. Euro American Conference on Telematics and Information Systems (EATIS ’18), November 12–15, 2018, Fortaleza, Brazil, 8 pages. https://doi.org/10.1145/3293614.3293618

A Correlation Index Between Two Different Text and Web Resource Classification Systems

maio 3, 2019 § Deixe um comentário

GUID-A74116EB-D038-4642-B116-DD2DEAE2FFD3-web

Abstract: Classifying content on the Web has been a common subject of research, since the amount of available data on the Web, especially in text format, grows every day. In this paper it is proposed a correlation index to measure how close a classification system based on Wikipedia categorization is of a service provided by Watson IBM that has the same purpose: text and resourceclassification on the Web.

Almeida, Rubia; Siqueira, Sean W.M.; Tibau, Marcelo; Queiroz, Jackson. A Correlation Index Between Two Different Text and Web Resource Classification Systems. EATIS ’18 Proceedings of the Euro American Conference on Telematics and Information Systems. Article No. 43. Fortaleza, Brazil — November 12 – 15, 2018. ACM New York, NY, USA ©2018 https://www.doi.org/10.1145/3293614.3293652

Onde estou?

Você está navegando atualmente a Educação categoria em Marcelo Tibau.